Preconditioned GMRES solver on multiple-GPU architecture

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Preconditioned Recycling GMRES Solver for Stochastic Helmholtz Problems

We present a parallel Schwarz type domain decomposition preconditioned recycling Krylov subspace method for the numerical solution of stochastic indefinite elliptic equations with two random coefficients. Karhunen-Loève expansions are used to represent the stochastic variables and the stochastic Galerkin method with double orthogonal polynomials is used to derive a sequence of uncoupled determi...

متن کامل

Multi-preconditioned Gmres

Standard Krylov subspace methods only allow the user to choose a single preconditioner, although in many situations there may be a number of possibilities. Here we describe an extension of GMRES, multi-preconditioned GMRES, which allows the use of more than one preconditioner. We give some theoretical results, propose a practical algorithm, and present numerical results from problems in domain ...

متن کامل

Preconditioned GMRES for oscillatory integrals

None of the existing methods for computing the oscillatory integral ∫ b a f(x)e iωg(x) dx achieve all of the following properties: high asymptotic order, stability, avoiding the computation of the path of steepest descent and insensitivity to oscillations in f . We present a new method that satisfies these properties, based on applying the gmres algorithm to a preconditioned differential operator.

متن کامل

Restarted Gmres Preconditioned by Deeation

This paper presents a new preconditioning technique for the restarted GMRES algorithm. It is based on an invariant subspace approximation which is updated at each cycle. Numerical examples show that this deea-tion technique gives a more robust scheme than the restarted algorithm, at a low cost of operations and memory.

متن کامل

SPIKE::GPU A SPIKE-based preconditioned GPU Solver for Sparse Linear Systems

This contribution outlines an approach that draws on general purpose graphics processing unit (GPGPU) computing to solve large linear systems. To methodology proposed relies on a SPIKE-based preconditioner with a Krylov-subspace method and has the following three stages: (i) row/column reordering for boosting diagonal dominance and reducing bandwidth; (ii) applying single precision truncated SP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2016

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2016.06.027